realnfo
.com
Encyclopedia of Electrical Engineering
Home
Electrical Engineering
Table of Contents
All Subjects
Basic Electrical Engineering
Fundamental of Physics
History
Sources of Electric Energy
Branches of Electrical Engineering
Electricity and Magnetism
More
Electrical Circuit Analysis
Ohms Law, Power and Energy
Basic Circuit Elements
Resistance
Series DC Circuits
Parallel DC Circuits
Series Parallel Circuits
Methods of Analysis
Nonsinusoidal Circuits
Network Theorems
Capacitors
More
Introduction to Computer
Types of Computer
Inside the Computer
Exploring Computer
More
Profiles
Q & A
Motor Design
☰
Home
More
Electrical Engineering
Table of Contents
Profiles
Q & A
Motor Design
Motor Design
Motor Design
Log in
Sign up
Electrical Circuit Analysis
1. Basic Circuit Elements
1.1. Active Circuit Elements
1.2. Passive Circuit Elements
2. Resistance
2.1. Resistance: Circular Wires
2.1.1. Circular Mils
2.1.2. Electrical Cables
2.1.3. Wire Gauges
2.2. Temperature Effect
2.2.1. Inferred Absolute Temperature
2.2.2. Temperature Coefficient of Resistance
2.2.3. PPM per degree Centigrade
2.3. Resistor
2.4. Color coding and Standard Resistor Values
2.5. Ohmmeter
2.6. Resistance: Metric Units
3. Ohms Law, Power and Energy
3.1. Energy
3.2. Power
3.3. Wattmeters
3.4. Efficiency
4. Series DC Circuits
4.1. Series Circuit
4.2. Circuit Instrumentation
4.3. Series Circuit Power Distribution
4.4. Series Voltage Sources
4.5. Kirchhoffs Voltage Law
4.6. Voltage Division in a Series Circuit
4.7. Interchanging Series Elements
4.8. Circuit Analysis Notation
4.8.1. Single and Double Subscript Notation
4.9. Internal Resistance of Voltage Sources
4.10. Voltage Regulation
4.11. Loading Effects of Instruments
5. Parallel DC Circuits
5.1. Parallel Circuits
5.2. Power Distribution
5.3. Kirchhoffs Current law
5.4. Current Divider Rule
5.5. Voltage Sources in Parallel
5.6. Open and Short Circuits
5.7. Voltmeter Loading Effect
5.8. Troubleshooting Techniques
5.9. Parallel DC Circuits Applications
6. Series Parallel Circuits
6.1. Reduce and Return Approach
6.2. Block Diagram Approach
6.3. Ladder Networks
6.4. Voltage Divider Supply (Loaded and Unloaded)
6.5. Potentiometer Loading
6.6. Iron Vane Movement
6.6.1. Ammeter Design
6.6.2. Voltmeter Design
6.6.3. Ohmmeter Design
7. Methods of Analysis
7.1. Current Sources
7.1.1. Source Conversion
7.1.2. Current Sources in Parallel
7.1.3. Current Sources in Series
7.2. Branch Current Analysis
7.3. Mesh Analysis
7.4. Mesh Analysis with Current Sources
7.5. Nodal Analysis
7.6. Nodal Analysis with Voltage Sources
7.7. Bridge Networks
7.8. Wye Delta Transformation
8. Network Theorems
8.1. Linearity Property
8.2. Superposition Theorem
8.3. Thevenins Theorem
8.4. Nortons Theorem
8.5. Maximum Power Transfer Theorem
8.6. Millmans Theorem
8.7. Substitution Theorem
8.8. Reciprocity Theorem
8.9. Application of Maximum Power Transfer Method
9. Capacitors
9.1. Capacitance
9.2. Types of capacitor
9.3. Capacitor Charging Phase
9.4. Capacitor Discharging Phase
9.5. Initial Conditions
9.6. Instantaneous Values
9.7. Thevenin Equivalent Circuit
9.8. Current through capacitor
9.9. Capacitors in series and parallel
9.10. Energy Stored by a Capacitor
9.11. Stray Capacitance
10. Magnetic Circuits
10.1. Magnetic Flux Density
10.2. Permeability
10.3. Magnetic Reluctance
10.4. Ohms Law for Magnetic Circuits
10.5. Magnetizing Force
10.6. Hysteresis Curve
10.7. Domain Theory of Magnetism
10.8. Amperes Circuital Law
10.9. Series Magnetic Circuits
10.10. Magnetic Circuit Air Gaps
10.11. Series Parallel Magnetic Circuits
10.12. Application of Magnetic circuits
10.12.1. Speakers and Microphones
10.12.2. Computer Hard Disks
10.12.3. Hall Effect Sensor
10.12.4. Magnetic Reed Switch
10.12.5. Magnetic Resonance Imaging
11. Inductors
11.1. Faradays Law of Induction
11.2. Lenz law
11.3. Self Inductance
11.4. Types of Inductors
11.5. Inductor values
11.6. Induced Voltage
11.7. RL Transients (storage cycle)
11.8. Initial Values
11.9. RL Transients (decay cycle)
11.10. Thevenin Equivalent Circuit of Inductor
11.11. Inductors in Series and Parallel
11.12. RL and RLC Circuits with DC Inputs
11.13. Energy Stored by an Inductor
11.14. Application of inductors
12. Sinusoidal Alternating Waveforms
12.1. Sinusoidal AC Voltage Generation
12.2. Sinusoidal AC Waveform Definitions
12.3. The Sine Wave
12.4. General Format for the Sinusoidal Voltage or Current
12.5. Sinusoidal Waveforms Phase Relations
12.6. Average Value
12.7. Effective or Root Mean Square (rms) Values
12.8. AC meters and Instruments
13. The Basic Elements and Phasors
13.1. The Derivative
13.2. Response of Resistor to a Sinusoidal Voltage
13.3. Response of Inductor to a Sinusoidal Voltage
13.4. Response of Capacitor to a Sinusoidal Voltage
13.5. Frequency Effects on L and C in DC Circuits
13.6. Frequency Response of the Basic Elements
13.7. Sinusoidal Voltage Average Power
13.8. AC Power Factor
13.9. Complex Numbers
13.9.1. Rectangular Form
13.9.2. Polar Form
13.9.3. Conversation between Forms
13.9.4. Mathematical Operations with Complex Numbers
13.10. Phasors
14. Series and Parallel ac Circuits
14.1. Impedance and the Phasor Diagram
14.1.1. Impedance of Resistive Elements
14.1.2. Impedance of Inductive Reactance
14.1.3. Impedance of Capacitive Reactance
14.1.4. Impedance Diagram
14.2. AC Series Configuration
14.2.1. RL Series Circuit Configuration with example
14.2.2. RC Series Circuit Configuration with example
14.2.3. RLC Series Circuit Configuration with example
14.3. AC Circuits Voltage divider rule
14.4. Frequency Response of the RC Circuit
14.5. SUMMARY of Series ac Circuits
14.6. Admittance and Susceptance
14.7. Parallel ac Networks
14.7.1. RL Parallel ac Network Configuration with example
14.7.2. RC Parallel ac Network Configuration with example
14.7.3. RLC Parallel ac Network Configuration with example
14.8. AC Circuits Current Divider Rule
14.9. Frequency Response of the Parallel RL Network
14.10. Parallel ac Networks Summary
14.11. AC Equivalent Circuit
14.12. Phase Shift Measurement with Dual Trace Oscilloscope
14.13. Application of Series and Parallel ac Circuits
14.13.1. Home Wiring
14.13.2. Speaker Systems
15. Methods of Analysis of AC Network
15.1. Independent Versus Dependent Controlled Sources
15.2. Source Conversion of ac Circuits
15.3. Mesh Analysis for ac Circuits
15.4. Nodal Analysis for ac Circuits
15.5. AC Bridge Networks
15.6. Ac Wye Delta Transformation
16. AC Network Theorem
16.1. Superposition Theorem (ac)
16.2. Thevenins Theorem (ac)
16.3. Nortons Theorem (ac)
16.4. Maximum Power Transfer Theorem (ac)
17. Power (AC)
17.1. Resistive (AC) Circuit Power Calculation
17.2. Apparent Power
17.3. Inductive Circuit and Reactive Power
17.4. Capacitive Circuit
17.5. The Power Triangle
17.6. The Total P, Q and S
17.7. Power Factor Correction
17.8. Wattmeters and Power Factor Meters
17.9. Effective Resistance
18. Resonance
18.1. Series Resonant Circuit
18.2. The Quality Factor (Q)
18.3. Total Impedance Versus Frequency
18.4. Selectivity of Frequency
18.5. Magnitudes of Voltages across RLC versus Frequency
18.6. Examples of Series Resonance Circuits
18.7. Parallel Resonant Circuit
18.7.1. Resonace Frequency of a Parallel Resonant Circuit
18.8. Selectivity Curve for Parallel Resonant Circuits
18.9. Effect of Quality Factor greater than or Equal to 10
18.9.1. Inductive Reactance
18.9.2. Resonant Frequency (Unity Power Factor)
18.9.3. Parallel Resistance across Inductance, Rp
18.9.4. Total impedance at resonance
18.9.5. Quality Factor
18.9.6. Bandwidth (BW)
18.9.7. Current through Capacitor and Inductor
18.10. Examples of Parallel Resonance
18.11. Applications of Resonance Circuits
19. Transformer
19.1. Mutual Inductance
19.2. The Iron Core Transformer
19.3. Reflected Impedance and Power
19.3.1. Transformer as a Impedance Matching
19.3.2. Transformer as an Isolation Device
19.4. Iron Core Transformer Equivalent Circuit
19.5. Transformer Frequency Considerations
19.6. Series Connection of Mutually Coupled Coils
19.7. Air Core Transformer
19.8. Transformer Nameplate Data
19.9. Types of Transformers
19.10. Tapped and Multiple Load Transformers
19.11. Networks with Magnetically Coupled Coils
19.12. Applications of Transformer
19.12.1. Transformer for Low Voltage Compensation
19.12.2. Ballast Transformer
20. Polyphase Systems
20.1. The Three Phase Generator
20.2. The Y Connected Generator
20.2.1. Phase Sequence (Y CONNECTED GENERATOR)
20.2.2. Y connected Generator connected to a Y connected load
20.3. The Y Delta System
20.4. The Delta Connected Generator
20.5. The Delta Delta, Delta Y Three Phase Systems
20.6. Power Calculation of Y Connected Balanced Load
20.7. Power Calculation of Delta Connected Balanced Load
20.8. The Three Wattmeter Method
20.9. The Two Wattmeter Method
20.10. Unbalanced Three phase Four wire, Y Connected Load
20.11. Unbalanced, Three phase, Three wire, Y Connected Load
21. Frequency Response
21.1. Logarithm
21.2. Decibels
21.2.1. Decibels with Power Gain
21.2.2. Decibels with Voltage Gain
21.2.3. The Human Auditory Response
21.2.4. Decibels Instrumentations
21.3. Transfer Function
21.4. Filters
21.4.1. RC Low Pass Filters
21.4.2. RC High Pass Filters
21.4.3. Pass Band Filters
21.4.4. Stop Band Filters
21.4.5. Double Tuned Filters
21.5. Bode Plots
21.5.1. High Pass RC Filter
21.5.2. Low Pass RC Filter
21.6. Sketching the Bode Response
21.7. Low Pass Filter with Limited Attenuation
21.8. High Pass Filter with Limited Attenuation
21.9. Crossover Networks
21.10. Application of Filters
21.10.1. Attenuators
21.10.2. Noise Filters
22. Pulse Waveform and the RC Response
22.1. Ideal versus Actual Pulse Waveform
22.2. Properties of a Pulse Waveform
22.3. Pulse Repetition Rate and Duty Cycle
22.4. Average Value of a Pulse Waveform
22.5. Transient in RC Network
22.6. RC Response to Square Wave Inputs
22.7. Oscilloscope Attenuator
22.8. Compensating Attenuator Probe
22.9. Application of Pulse Waveform
23. The Laplace Transform
23.1. Properties of The Laplace Transform
23.1.1. Linearity Property of The Laplace Transform
23.1.2. Scaling Property of The Laplace Transform
23.1.3. Time Shift Property of The Laplace Transform
23.1.4. Frequency Shift Property of The Laplace Transform
23.1.5. Time Differentiation Property of The Laplace Transform
23.1.6. Time Integral Property of The Laplace Transform
23.1.7. Frequency Differentiation Property of The Laplace Transform
23.1.8. Time Periodicity Property of The Laplace Transform
23.1.9. Initial and Final Values Properties of The Laplace Transform
23.2. List of the Properties of The Laplace Transform
23.3. Examples of The Laplace Transform
23.4. The Inverse Laplace Transform
23.4.1. Simple Poles
23.4.2. Repeated Poles
23.4.3. Complex Poles
23.5. Examples of The Inverse Laplace Transform
23.6. Circuit Application of The Laplace Transform
23.7. Transfer Function of The Laplace Transform
23.8. The Convolution Integral
23.9. Application to Integrodifferential Equations
23.10. Application of The Laplace Transform to the Network Stability
23.11. Application of The Laplace Transform to the Network Synthesis
24. The Fourier Series
24.1. Trigonometric Fourier Series
24.2. Symmetry Considerations of The Fourier Series
24.2.1. Even Symmetry
24.2.2. Odd Symmetry
24.2.3. Half Wave Symmetry
24.3. Common Functions of The Fourier Series
24.4. Circuit Application of The Fourier Series
24.5. Average Power and RMS Values of The Fourier Series
24.6. Exponential Fourier Series
24.7. Application of the Fourier Series to Spectrum Analyzers
24.8. Application of the Fourier Series to Filters
25. Fourier Transform
25.1. Properties of the Fourier Transform
25.1.1. Linearity property of the Fourier Transform
25.1.2. Time Scaling property of the Fourier Transform
25.1.3. Time Shifting property of the Fourier Transform
25.1.4. Frequency Shifting property of the Fourier Transform
25.1.5. Time Differenciation property of the Fourier Transform
25.1.6. Time Integration property of the Fourier Transform
25.1.7. Reversal property of the Fourier Transform
25.1.8. Duality property of the Fourier Transform
25.1.9. Convolution property of the Fourier Transform
25.1.10. Summary of the Properties of the Fourier Transform
25.2. Examples of the Fourier Transform
25.3. Examples of the Inverse Fourier Transform
25.4. Circuit Application of the Fourier Transform
25.5. Parsevals Theorem
25.6. Comparing the Fourier and Laplace Transform
25.7. Application of the Fourier Transform to the Amplitude Modulation
25.8. Application of the Fourier Transform to the Sampling
26. Two Port Networks
26.1. Impedance Parameters
26.2. Admittance Parameters
26.3. Hybrid Parameters
26.4. Transmission Parameters
26.5. Relationships between Parameters
26.6. Interconnection of Networks
26.7. Application of the Two Port Networks to the Transistor Circuits
26.8. Application of the Two Port Networks to the Ladder Network Synthesis
27. Nonsinusoidal Circuits
27.1. Circuit Response to a Nonsinusoidal Input
27.2. Addition and Subtraction of Nonsinusoidal Waveforms
Application of Filters
Electrical Circuit Analysis
>
Frequency Response
In this section the application of filters are limited to:
Attenuators
Noise Filters
Crossover Networks
Previous | Next
Application of Filters