Thevenin Equivalent Circuit of Inductor
In Chapter 8 ("Capacitors"), we found that there are occasions when
the circuit does not have the basic form of [Fig. 1]. The same is true
for inductive networks. Again, it is necessary to find the Thevenin
equivalent circuit before proceeding in the manner described in this
chapter.
Consider the following example.
Fig. 1: Standard inductive circuit.
Example 1: For the network of [Fig. 2]:
a. Find the mathematical expression for the transient behavior of the current iL and the voltage $v_L$ after the closing of the switch ($I_i = 0 mA$).
b. Draw the resultant waveform for each.
Solution:
a. Applying Thevenin's theorem to the $80mH$ inductor ([Fig. 3]) yields
Applying the voltage divider rule ([Fig. 4]),
The thevenin equivalent circuit is shown in [Fig. 5].
and
b.
a. Find the mathematical expression for the transient behavior of the current iL and the voltage $v_L$ after the closing of the switch ($I_i = 0 mA$).
b. Draw the resultant waveform for each.
Fig. 2: For Example 1.
a. Applying Thevenin's theorem to the $80mH$ inductor ([Fig. 3]) yields
$$ \bbox[10px,border:1px solid grey]{R_{TH} = {R \over N} = {20kΩ \over 2} = 10kΩ}$$
Fig. 3: Determining $R_{Th}$ for the network of Fig. 2
$$E_{TH} = {(R_2 + R_3) E \over R_1 + R_2 + R_3}$$
$$ = {(4kΩ + 16kΩ) 12 \over 20kΩ+4kΩ + 16kΩ}$$
$$ \bbox[10px,border:1px solid grey]{E_{TH}= 6V}$$
Fig. 4: Determining $E_{Th}$ for the network of Fig. 2.
Fig. 5: The resulting thevenin equivalent circuit for
the network of [Fig. 2].
$$\begin{split}
i_L &= I_m(1-e^{-t/\tau}) = {E_{Th} \over R_{TH}}(1-e^{-t/\tau})\\
\tau &={ L \over R_{TH}} = {80mH \over 10kΩ} = 8\mu s\\
i_L &= {6 \over 10kΩ}(1-e^{-t/8\mu s})\\
\end{split}
$$
$$\bbox[10px,border:1px solid grey]{i_L = 0.6 \times 10^{-3}(1-e^{-t/8\mu s})}$$
$$ \bbox[10px,border:1px solid grey]{v_L = E_{TH} e^{-t/\tau} = 6e^{-t/8\mu s}}$$
Fig. 6: The resulting waveforms for $i_L$ and $v_L$ for the network of [Fig. 2].
Be the first to comment here!

Do you have any questions?