In
Chapter 8 ("Capacitors"), we found that there are occasions when
the circuit does not have the basic form of
[Fig. 1]. The same is true
for inductive networks. Again, it is necessary to find the Thevenin
equivalent circuit before proceeding in the manner described in this
chapter.
Fig. 1: Standard inductive circuit.
Consider the following example.
Example 1: For the network of
[Fig. 2]:
a. Find the mathematical expression for the transient behavior of the
current iL and the voltage $v_L$ after the closing of the switch ($I_i = 0 mA$).
b. Draw the resultant waveform for each.
Fig. 2: For Example 1.
Solution:
a. Applying Thevenin's theorem to the $80mH$ inductor (
[Fig. 3]) yields
$$ \bbox[10px,border:1px solid grey]{R_{TH} = {R \over N} = {20kΩ \over 2} = 10kΩ}$$
Fig. 3: Determining $R_{Th}$ for the network of Fig. 2
Applying the
voltage divider rule (
[Fig. 4]),
$$E_{TH} = {(R_2 + R_3) E \over R_1 + R_2 + R_3}$$
$$ = {(4kΩ + 16kΩ) 12 \over 20kΩ+4kΩ + 16kΩ}$$
$$ \bbox[10px,border:1px solid grey]{E_{TH}= 6V}$$
Fig. 4: Determining $E_{Th}$ for the network of Fig. 2.
The thevenin equivalent circuit is shown in
[Fig. 5].
Fig. 5: The resulting thevenin equivalent circuit for
the network of [Fig. 2].
$$\begin{split}
i_L &= I_m(1-e^{-t/\tau}) = {E_{Th} \over R_{TH}}(1-e^{-t/\tau})\\
\tau &={ L \over R_{TH}} = {80mH \over 10kΩ} = 8\mu s\\
i_L &= {6 \over 10kΩ}(1-e^{-t/8\mu s})\\
\end{split}
$$
$$\bbox[10px,border:1px solid grey]{i_L = 0.6 \times 10^{-3}(1-e^{-t/8\mu s})}$$
and
$$ \bbox[10px,border:1px solid grey]{v_L = E_{TH} e^{-t/\tau} = 6e^{-t/8\mu s}}$$
b.
Fig. 6: The resulting waveforms for $i_L$ and $v_L$ for the network of [Fig. 2].
Do you want to say or ask something?