Unbalanced, Three phase, Three wire, Y Connected Load

Facebook
Whatsapp
Twitter
LinkedIn
For the system shown in Fig. 1, the required equations can be derived by first applying Kirchhoff’s voltage law around each closed loop to produce
Unbalanced, three-phase, three-wire, Y-connected load
Fig. 1: Unbalanced, three-phase, three-wire, Y-connected load
$$\begin{array}{l}\mathbf{E}_{A B}-\mathbf{V}_{a n}+\mathbf{V}_{b n}=0 \\\mathbf{E}_{B C}-\mathbf{V}_{b n}+\mathbf{V}_{c n}=0 \\\mathbf{E}_{C A}-\mathbf{V}_{c n}+\mathbf{V}_{a n}=0\end{array}$$
Substituting, we have
$$\mathbf{V}_{a n}=\mathbf{I}_{a n} \mathbf{Z}_{1} \quad \mathbf{V}_{b n}=\mathbf{I}_{b n} \mathbf{Z}_{2} \quad \mathbf{V}_{c n}=\mathbf{I}_{c n} \mathbf{Z}_{3}$$
$$\begin{array}{l} \bbox[10px,border:1px solid grey]{\mathbf{E}_{A B}=\mathbf{I}_{a n} \mathbf{Z}_{1}-\mathbf{I}_{b n} \mathbf{Z}_{2}} \quad \text{(1)}\\ \bbox[10px,border:1px solid grey]{\mathbf{E}_{B C}=\mathbf{I}_{b n} \mathbf{Z}_{2}-\mathbf{I}_{c n} \mathbf{Z}_{3}} \quad \text{(2)}\\ \bbox[10px,border:1px solid grey]{\mathbf{E}_{C A}=\mathbf{I}_{c n} \mathbf{Z}_{3}-\mathbf{I}_{a n} \mathbf{Z}_{1}} \quad \text{(3)} \end{array}$$
Applying Kirchhoff's current law at node $ n $ results in
$$\mathbf{I}_{a n}+\mathbf{I}_{b n}+\mathbf{I}_{c n}=0 \quad \text { and } \quad \mathbf{I}_{b n}=-\mathbf{I}_{a n}-\mathbf{I}_{c n}$$
Substituting for $ \mathbf{I}_{b n} $ in Eqs. (1) and (2) yields
$$\begin{array}{l}\mathbf{E}_{A B}=\mathbf{I}_{a n} \mathbf{Z}_{1}-\left[-\left(\mathbf{I}_{a n}+\mathbf{I}_{c n}\right)\right] \mathbf{Z}_{2} \\\mathbf{E}_{B C}=-\left(\mathbf{I}_{a n}+\mathbf{I}_{c n}\right) \mathbf{Z}_{2}-\mathbf{I}_{c n} \mathbf{Z}_{3} \end{array}$$
which are rewritten as
$$\begin{array}{l}\mathbf{E}_{A B}=\mathbf{I}_{a n}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)+\mathbf{I}_{c n} \mathbf{Z}_{2} \\\mathbf{E}_{B C}=\mathbf{I}_{a n}\left(-\mathbf{Z}_{2}\right)+\mathbf{I}_{c n}\left[-\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)\right]\end{array}$$
Using determinants, we have
$$\begin{aligned}\mathbf{I}_{a n} &=\frac{\left|\begin{array}{cc}\mathbf{E}_{A B} & \mathbf{Z}_{2} \\\mathbf{E}_{B C} & -\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)\end{array}\right|}{\left|\begin{array}{cc}\mathbf{Z}_{1}+\mathbf{Z}_{2} & \mathbf{Z}_{2} \\-\mathbf{Z}_{2} & -\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)\end{array}\right|} \\&=\frac{-\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right) \mathbf{E}_{A B}-\mathbf{E}_{B C} \mathbf{Z}_{2}}{-\mathbf{Z}_{1} \mathbf{Z}_{2}-\mathbf{Z}_{1} \mathbf{Z}_{3}-\mathbf{Z}_{2} \mathbf{Z}_{3}-\mathbf{Z}_{2}^{2}+\mathbf{Z}_{2}^{2}} \\\mathbf{I}_{a n} &=\frac{-\mathbf{Z}_{2}\left(\mathbf{E}_{A B}+\mathbf{E}_{B C}\right)-\mathbf{Z}_{3} \mathbf{E}_{A B}}{-\mathbf{Z}_{1} \mathbf{Z}_{2}-\mathbf{Z}_{1} \mathbf{Z}_{3}-\mathbf{Z}_{2} \mathbf{Z}_{3}}\end{aligned}$$
Applying Kirchhoff's voltage law to the line voltages:
$$\mathbf{E}_{A B}+\mathbf{E}_{C A}+\mathbf{E}_{B C}=0 \text { or } \mathbf{E}_{A B}+\mathbf{E}_{B C}=-\mathbf{E}_{C A}$$
Substituting for $ \left(\mathbf{E}_{A B}+\mathbf{E}_{C B}\right) $ in the above equation for $ \mathbf{I}_{a n} $ :
$$\mathbf{I}_{a n}=\frac{-\mathbf{Z}_{2}\left(-\mathbf{E}_{C A}\right)-\mathbf{Z}_{3} \mathbf{E}_{A B}}{-\mathbf{Z}_{1} \mathbf{Z}_{2}-\mathbf{Z}_{1} \mathbf{Z}_{3}-\mathbf{Z}_{2} \mathbf{Z}_{3}}$$
and
$$ \bbox[10px,border:1px solid grey]{\mathbf{I}_{a n}=\frac{\mathbf{E}_{A B} \mathbf{Z}_{3}-\mathbf{E}_{C A} \mathbf{Z}_{2}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}}} \tag{4}$$
In the same manner, it can be shown that
$$\bbox[10px,border:1px solid grey]{\mathbf{I}_{c n}=\frac{\mathbf{E}_{C A} \mathbf{Z}_{2}-\mathbf{E}_{B C} \mathbf{Z}_{1}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}}} \tag{5}$$
Substituting Eq. (5) for $ \mathbf{I}_{c n} $ in the right-hand side of Eq. (2), we obtain
$$\bbox[10px,border:1px solid grey]{\mathbf{I}_{b n}=\frac{\mathbf{E}_{B C} \mathbf{Z}_{1}-\mathbf{E}_{A B} \mathbf{Z}_{3}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}}}$$

Do you have any questions?

250
Be the first to comment here!
Terms and Condition
Copyright © 2011 - 2025 realnfo.com
Privacy Policy