For the representative parallel ac network of
[Fig. 1],
Fig. 1: Parallel ac network.
the total impedance or admittance is determined as described in the previous section, and the source current is determined by
Ohm's law as follows:
$$I = {E \over Z_T} = E Y_T$$
Since the voltage is the same across parallel elements, the current
through each branch can then be found through another application of
Ohm's law:
$$I_1 = {E \over Z_1} = E Y_1$$
$$I_2 = {E \over Z_2} = E Y_2$$
Kirchhoff's current law can then be applied in the same manner as
employed for dc networks.
However, keep in mind that we are now
dealing with the algebraic manipulation of quantities that have both
magnitude and direction.
or
The power to the network can be determined by
where $\theta_T$ is the phase angle between E and I.
Let us now look at a few examples carried out in great detail for the
first exposure.
RL Parallel ac Network Configuration
RC Parallel ac Network Configuration
RLC Parallel ac Network Configuration
Do you want to say or ask something?