Linearity Property of The Laplace Transform

Facebook
Whatsapp
Twitter
LinkedIn
If $ F_{1}(s) $ and $ F_{2}(s) $ are, respectively, the Laplace transforms of $ f_{1}(t) $ and $ f_{2}(t) $, then
$$\mathcal{L}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right]=a_{1} F_{1}(s)+a_{2} F_{2}(s) \tag{1}$$
$$\mathcal{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t \tag{2}$$
where $ a_{1} $ and $ a_{2} $ are constants. Equation $ 1 $ expresses the linearity property of the Laplace transform. The proof of Eq. (1) follows readily from the definition of the Laplace transform in Eq. (2). For example, by the linearity property in Eq. (1), we may write
$$\mathcal{L}[\cos w t]=\mathcal{L}\left[\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right)\right]=\frac{1}{2} \mathcal{L}\left[e^{j \omega t}\right]+\frac{1}{2} \mathcal{L}\left[e^{-j \omega t}\right]$$
But from Example 1, $ \mathcal{L}\left[e^{-a t}\right]=1 /(s+a) $. Hence,
$$\mathcal{L}[\cos w t]=\frac{1}{2}\left(\frac{1}{s-j \omega}+\frac{1}{s+j \omega}\right)=\frac{s}{s^{2}+\omega^{2}}$$

Do you want to say or ask something?

Only 250 characters are allowed. Remaining: 250
Please login to enter your comments. Login or Signup .
Be the first to comment here!
Terms and Condition
Copyright © 2011 - 2024 realnfo.com
Privacy Policy