Linearity Property of The Laplace Transform

Facebook
Whatsapp
Twitter
LinkedIn
If $ F_{1}(s) $ and $ F_{2}(s) $ are, respectively, the Laplace transforms of $ f_{1}(t) $ and $ f_{2}(t) $, then
$$\mathcal{L}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right]=a_{1} F_{1}(s)+a_{2} F_{2}(s) \tag{1}$$
$$\mathcal{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t \tag{2}$$
where $ a_{1} $ and $ a_{2} $ are constants. Equation $ 1 $ expresses the linearity property of the Laplace transform. The proof of Eq. (1) follows readily from the definition of the Laplace transform in Eq. (2). For example, by the linearity property in Eq. (1), we may write
$$\mathcal{L}[\cos w t]=\mathcal{L}\left[\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right)\right]=\frac{1}{2} \mathcal{L}\left[e^{j \omega t}\right]+\frac{1}{2} \mathcal{L}\left[e^{-j \omega t}\right]$$
But from Example 1, $ \mathcal{L}\left[e^{-a t}\right]=1 /(s+a) $. Hence,
$$\mathcal{L}[\cos w t]=\frac{1}{2}\left(\frac{1}{s-j \omega}+\frac{1}{s+j \omega}\right)=\frac{s}{s^{2}+\omega^{2}}$$

Do you have any questions?

250
Be the first to comment here!
Terms and Condition
Copyright © 2011 - 2025 realnfo.com
Privacy Policy