Fourier Transform
INTRODUCTION
Fourier series enable us to represent a periodic function as a sum of sinusoids and to obtain the frequency spectrum from the series. We begin by using a Fourier series as a stepping stone in defining the Fourier transform. Then we develop some of the properties of the Fourier transform. Next, we apply the Fourier transform in analyzing circuits. We discuss Parseval's theorem, compare the Laplace and Fourier transforms, and see how the Fourier transform is applied in amplitude modulation and sampling.DEFINITION OF THE FOURIER TRANSFORM
We saw in the previous chapter that a nonsinusoidal periodic function can be represented by a Fourier series, provided that it satisfies the Dirichlet conditions. What happens if a function is not periodic? Unfortunately, there are many important nonperiodic functions-such as a unit step or an exponential function-that we cannot represent by a Fourier series. As we shall see, the Fourier transform allows a transformation from the time to the frequency domain, even if the function is not periodic. Suppose we want to find the Fourier transform of a nonperiodic function $ p(t) $, shown in Fig. 1(a). We consider a periodic function $ f(t) $ whose shape over one period is the same as $ p(t) $, as shown in Fig. 1(b).
Fig. 1: (a) A nonperiodic function,
(b) increasing T to infinity makes f (t) become the nonperiodic function in (a).


Fig. 2: Effect of increasing T on the spectrum of the periodic
pulse trains in Fig. 1(b).
Equations from the other pages
$$\bbox[10px,border:1px solid grey]{f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega_{0} t} }\tag{A}$$
$$f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega_{0} t} \tag{1}$$
$$c_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j n \omega_{0} t} d t \tag{2} $$
$$\omega_{0}=\frac{2 \pi}{T} \tag{3}$$
$$\Delta \omega=(n+1) \omega_{0}-n \omega_{0}=\omega_{0}=\frac{2 \pi}{T} \tag{4}$$
$$\begin{aligned}f(t) &=\sum_{n=-\infty}^{\infty}\left[\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j n \omega \omega_{0} t} d t\right] e^{j n \omega \omega_{0} t} \\&=\sum_{n=-\infty}^{\infty}\left[\frac{\Delta \omega}{2 \pi} \int_{-T / 2}^{T / 2} f(t) e^{-j n \omega \omega_{0} t} d t\right] e^{j n \omega_{0} t} \\&=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty}\left[\int_{-T / 2}^{T / 2} f(t) e^{-j n \omega_{0} t} d t\right] \Delta \omega e^{j n \omega_{0} t}\end{aligned} \tag{5}$$
$$\begin{array}{l}\sum_{n=-\infty}^{\infty} \Longrightarrow \int_{-\infty}^{\infty} \\\Delta \omega \quad \Longrightarrow \quad d \omega \\n \omega_{0} \quad \Longrightarrow \quad \omega \\\end{array} \tag{6}$$
$$f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t\right] e^{j \omega t} d \omega \tag{7}$$
$$f(t)=\mathcal{F}^{-1}[F(\omega)]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega \tag{9}$$
To avoid the complex algebra that explicitly appears in the Fourier transform, it is sometimes expedient to temporarily replace $ j \omega $ with $ s $ and then replace $ s $ with $ j \omega $ at the end.
Example 1: Find the Fourier transform of the following functions:
(a) $ \delta\left(t-t_{0}\right) $,
(b) $ e^{j \omega \omega t} $,
(c) $ \cos \omega_{0} t $ Solution:
(a) For the impulse function,
where the sifting property of the impulse function has been applied. For the special case $ t_{0}=0 $, we obtain
$$\mathcal{F}[\delta(t)]=1 \tag{1.2}$$
This shows that the magnitude of the spectrum of the impulse function is constant; that is, all frequencies are equally represented in the impulse function.
(b) We can find the Fourier transform of $ e^{j \omega_{0} t} $ in two ways. If we let
$$F(\omega)=\delta\left(\omega-\omega_{0}\right)$$
then we can find $ f(t) $ using Eq. (9), writing
Using the sifting property of the impulse function gives
$$f(t)=\frac{1}{2 \pi} e^{j \omega_{0} t}$$
Since $ F(\omega) $ and $ f(t) $ constitute a Fourier transform pair, so too must $ 2 \pi \delta\left(\omega-\omega_{0}\right) $ and $ e^{j \omega_{0} t} $,
Alternatively, from Eq. (2),
$$\delta(t)=\mathcal{F}^{-1}[1]$$
Using the inverse Fourier transform formula in Eq. (9),
or
Interchanging variables $ t $ and $ \omega $ results in
Using this result, the Fourier transform of the given function is
Since the impulse function is an even function, with $ \delta\left(\omega_{0}-\omega\right)=\delta(\omega- \left.\omega_{0}\right) $,
By simply changing the sign of $ \omega_{0} $, we readily obtain
Also, by setting $ \omega_{0}=0 $,
$$\mathcal{F}[1]=2 \pi \delta(\omega) \tag{1.8}$$
(c) By using the result in Eqs. (1.6) and (1.7), we get
The Fourier transform of the cosine signal is shown in Fig. 3.

(a) $ \delta\left(t-t_{0}\right) $,
(b) $ e^{j \omega \omega t} $,
(c) $ \cos \omega_{0} t $ Solution:
(a) For the impulse function,
$$F(\omega)=\mathcal{F}\left[\delta\left(t-t_{0}\right)\right]=\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) e^{-j \omega t} d t=e^{-j \omega t_{0}} \tag{1.1}$$
$$f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta\left(\omega-\omega_{0}\right) e^{j \omega t} d \omega$$
$$\mathcal{F}\left[e^{j \omega_{0} t}\right]=2 \pi \delta\left(\omega-\omega_{0}\right) \tag{1.3}$$
$$\delta(t)=\mathcal{F}^{-1}[1]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} 1 e^{j \omega t} d \omega$$
$$\int_{-\infty}^{\infty} e^{j \omega t} d \omega=2 \pi \delta(t) \tag{1.4}$$
$$\int_{-\infty}^{\infty} e^{j \omega t} d t=2 \pi \delta(\omega) \tag{1.5}$$
$$\mathcal{F}\left[e^{j \omega_{0} t}\right]=\int_{-\infty}^{\infty} e^{j \omega_{0} t} e^{-j \omega t} d t=\int_{-\infty}^{\infty} e^{j\left(\omega_{0}-\omega\right)} d t=2 \pi \delta\left(\omega_{0}-\omega\right)$$
$$\mathcal{F}\left[e^{j \omega_{0} t}\right]=2 \pi \delta\left(\omega-\omega_{0}\right) \tag{1.6}$$
$$\mathcal{F}\left[e^{-j \omega_{0} t}\right]=2 \pi \delta\left(\omega+\omega_{0}\right) \tag{1.7}$$
$$\begin{aligned}\mathcal{F}\left[\cos \omega_{0} t\right] &=\mathcal{F}\left[\frac{e^{j \omega_{0} t}+e^{-j \omega_{0} t}}{2}\right] \\&=\frac{1}{2} \mathcal{F}\left[e^{j \omega_{0} t}\right]+\frac{1}{2} \mathcal{F}\left[e^{-j \omega_{0} t}\right] \\&=\pi \delta\left(\omega-\omega_{0}\right)+\pi \delta\left(\omega+\omega_{0}\right)\end{aligned}$$

Fig. 3: Fourier transform of $f (t) = \cos ω_0 t$.
Be the first to comment here!

Do you have any questions?