Linearity property of the Fourier Transform

Facebook
Whatsapp
Twitter
LinkedIn
If $ F_{1}(\omega) $ and $ F_{2}(\omega) $ are the Fourier transforms of $ f_{1}(t) $ and $ f_{2}(t) $, respectively, then
$$\mathcal{F}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right]=a_{1} F_{1}(\omega)+a_{2} F_{2}(\omega) \tag{1} $$
where $ a_{1} $ and $ a_{2} $ are constants. This property simply states that the Fourier transform of a linear combination of functions is the same as the linear combination of the transforms of the individual functions. The proof of the linearity property in Eq. (1) is straightforward. By definition,
$$\begin{aligned}\mathcal{F}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right] &=\int_{-\infty}^{\infty}\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right] e^{-j \omega t} d t \\&=\int_{-\infty}^{\infty} a_{1} f_{1}(t) e^{-j \omega t} d t+\int_{-\infty}^{\infty} a_{2} f_{2}(t) e^{-j \omega t} d t \\&=a_{1} F_{1}(\omega)+a_{2} F_{2}(\omega)\end{aligned} \tag{2}$$
For example, $ \sin \omega_{0} t=\frac{1}{2 j}\left(e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right) $. Using the linearity property,
$$\begin{aligned}F\left[\sin \omega_{0} t\right] &=\frac{1}{2 j}\left[\mathcal{F}\left(e^{j \omega_{0} t}\right)-\mathcal{F}\left(e^{-j \omega_{0} t}\right)\right] \\&=\frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]\end{aligned}$$

Do you have any questions?

250
Be the first to comment here!
Terms and Condition
Copyright © 2011 - 2025 realnfo.com
Privacy Policy