Table. 1: Properties of the Fourier transform
Linearity | $ a_{1} f_{1}(t)+a_{2} f_{2}(t) $ | $ a_{1} F_{1}(\omega)+a_{2} F_{2}(\omega) $ |
Scaling | $ f(a t) $ | $ \frac{1}{|a|} F\left(\frac{\omega}{a}\right) $ |
Time shift | $ f(t-a) u(t-a) $ | $ e^{-j \omega a} F(\omega) $ |
Frequency shift | $ e^{j \omega_{0} t} f(t) $ | $ F\left(\omega-\omega_{0}\right) $ |
Modulation | $ \cos \left(\omega_{0} t\right) f(t) $ | $ \frac{1}{2}\left[F\left(\omega+\omega_{0}\right)+F\left(\omega-\omega_{0}\right)\right] $ |
Time differentiation | $ \frac{d f}{d t} $ | $ j \omega F(\omega) $ |
| $ \frac{d^{n} f}{d t^{n}} $ | $ (j \omega)^{n} F(\omega) $ |
Time integration | $ \int_{-\infty}^{t} f(t) d t $ | $ \frac{F(\omega)}{j \omega}+\pi F(0) \delta(\omega) $ |
Frequency differentiation | $ t^{n} f(t) $ | $ (j)^{n} \frac{d^{n}}{d \omega^{n}} F(\omega) $ |
Reversal | $ f(-t) $ | $ F(-\omega) $ or $ F^{*}(\omega) $ |
Duality | $ F(t) $ | $2 \pi f(-\omega) $ |
Convolution in $ t $ | $ f_{1}(t) * f_{1}(t) $ | $ F_{1}(\omega) F_{2}(\omega) $ |
Convolution in $ \omega $ | $ f_{1}(t) f_{1}(t) $ | $ \frac{1}{2 \pi} F_{1}(\omega) * F_{2}(\omega) $ |
Table. 2: Fourier transform pairs.
$δ(t)$ | $1$ |
$1$ | $2πδ(ω)$ |
$u(t)$ | $πδ(ω) + { 1 \over jω}$ |
$u(t + τ) − u(t − τ)$ | $2 {sin ωτ \over ω}$ |
$|t|$ | ${ -2 \over ω^2}$ |
$sgn(t)$ | ${ 2 \over jω}$ |
$e^{−at}u(t)$ | ${ 1 \over a + jω }$ |
$e^{at}u(-t)$ | ${ 1 \over a - jω }$ |
$t^ne^{−at}u(t)$ | ${ n! \over (a + jω)^{n+1} }$ |
$e^{−a|t|}$ | ${ 2a \over a^2 + ω^2}$ |
$e^{jω_0t}$ | $2πδ(ω − ω_0)$ |
$\sin ω_0t$ | $jπ[δ(ω + ω_0) − δ(ω − ω_0)]$ |
$\cos ω_0t$ | $π[δ(ω + ω_0) + δ(ω − ω_0)]$ |
$e^{−at}\sin ω_0t u(t)$ | ${ω_0 \over (a + jω)^2 + ω_0^2}$ |
$e^{−at}\cos ω_0t u(t)$ | ${a + jω \over (a + jω)^2 + ω_0^2}$ |
| |
Do you want to say or ask something?