Summary of the Properties of the Fourier Transform

Facebook
Whatsapp
Twitter
LinkedIn
Table. 1: Properties of the Fourier transform
Property $ f(t) $$ F(\omega) $
Linearity$ a_{1} f_{1}(t)+a_{2} f_{2}(t) $$ a_{1} F_{1}(\omega)+a_{2} F_{2}(\omega) $
Scaling $ f(a t) $$ \frac{1}{|a|} F\left(\frac{\omega}{a}\right) $
Time shift$ f(t-a) u(t-a) $$ e^{-j \omega a} F(\omega) $
Frequency shift$ e^{j \omega_{0} t} f(t) $$ F\left(\omega-\omega_{0}\right) $
Modulation $ \cos \left(\omega_{0} t\right) f(t) $$ \frac{1}{2}\left[F\left(\omega+\omega_{0}\right)+F\left(\omega-\omega_{0}\right)\right] $
Time differentiation$ \frac{d f}{d t} $$ j \omega F(\omega) $
$ \frac{d^{n} f}{d t^{n}} $$ (j \omega)^{n} F(\omega) $
Time integration$ \int_{-\infty}^{t} f(t) d t $$ \frac{F(\omega)}{j \omega}+\pi F(0) \delta(\omega) $
Frequency differentiation$ t^{n} f(t) $$ (j)^{n} \frac{d^{n}}{d \omega^{n}} F(\omega) $
Reversal$ f(-t) $$ F(-\omega) $ or $ F^{*}(\omega) $
Duality$ F(t) $$2 \pi f(-\omega) $
Convolution in $ t $$ f_{1}(t) * f_{1}(t) $$ F_{1}(\omega) F_{2}(\omega) $
Convolution in $ \omega $$ f_{1}(t) f_{1}(t) $$ \frac{1}{2 \pi} F_{1}(\omega) * F_{2}(\omega) $
Table. 2: Fourier transform pairs.
$f (t)$$F (ω)$
$δ(t)$$1$
$1$$2πδ(ω)$
$u(t)$$πδ(ω) + { 1 \over jω}$
$u(t + τ) − u(t − τ)$$2 {sin ωτ \over ω}$
$|t|$${ -2 \over ω^2}$
$sgn(t)$${ 2 \over jω}$
$e^{−at}u(t)$${ 1 \over a + jω }$
$e^{at}u(-t)$${ 1 \over a - jω }$
$t^ne^{−at}u(t)$${ n! \over (a + jω)^{n+1} }$
$e^{−a|t|}$${ 2a \over a^2 + ω^2}$
$e^{jω_0t}$$2πδ(ω − ω_0)$
$\sin ω_0t$$jπ[δ(ω + ω_0) − δ(ω − ω_0)]$
$\cos ω_0t$$π[δ(ω + ω_0) + δ(ω − ω_0)]$
$e^{−at}\sin ω_0t u(t)$${ω_0 \over (a + jω)^2 + ω_0^2}$
$e^{−at}\cos ω_0t u(t)$${a + jω \over (a + jω)^2 + ω_0^2}$

Do you want to say or ask something?

Only 250 characters are allowed. Remaining: 250
Please login to enter your comments. Login or Signup .
Be the first to comment here!
Terms and Condition
Copyright © 2011 - 2024 realnfo.com
Privacy Policy