For the network of Fig. 1,
Fig. 1:
$$ Y_T = { 1 \over Z_1} + { 1 \over Z_2} + { 1 \over Z_4}\\
= { 1 \over R} + { 1 \over j X_{Lp}} + { 1 \over - j X_{C}}\\
={ 1 \over R} -j { 1 \over X_{Lp}} + j{ 1 \over X_{C}}\\
Y_T={ 1 \over R} + j ({ 1 \over X_{C}} - { 1 \over X_{Lp}})\\
For unity power factor, the reactive component must be zero as
defined by
$${ 1 \over X_{C}} - { 1 \over X_{Lp}} = 0$$
Therefore,
$${ 1 \over X_{C}} = { 1 \over X_{Lp}}$$
and
$$X_{C} = X_{Lp}$$
Substituting for %X_{Lp}$ yields
$${ R^2_L + X^2_L \over X_L } = X_C$$
$$R^2_L + X^2_L = X_L \, X_C$$
$$R^2_L + X^2_L = wL \, {1 \over wC} = { L \over C}$$
or
$$X^2_L = { L \over C} - R^2_l$$
$$2 \pi f_p L = \sqrt{{ L \over C} - R^2_l}$$
and
$$f_p = { 1 \over 2 \pi L } \sqrt{{ L \over C} - R^2_l}$$
Multiplying the top and bottom of the factor within the square-root
sign by $C/L$ produces
$$f_p = { 1 \over 2 \pi L } \sqrt{{ 1 - R^2_l(C/L) \over C/L}}$$
$$f_p = { 1 \over 2 \pi L \sqrt{C/L}} \sqrt{1 - { R^2_l C /over L}}$$
and
$$\bbox[10px,border:1px solid grey]{f_p = { 1 \over 2 \pi \sqrt{LC}} \sqrt{1 - { R^2_l C /over L}}}$$
$$\bbox[10px,border:1px solid grey]{f_p = fs \sqrt{1 - { R^2_l C /over L}}}$$
where fp is the resonant frequency of a parallel resonant circuit (for
$Fp = 1$) and fs is the resonant frequency as determined by $X_L = X_C$ for
series resonance. Note that unlike a series resonant circuit, the resonant frequency $fp$ is a function of resistance (in this case Rl). Recognize also that as the magnitude of Rl approaches zero, fp rapidly
approaches fs.