Bridge Networks
What is a bridge network?
The bridge network is a configuration that has a multitude of applications. This type of network is used in both dc and ac meters. Electronics courses introduce these in the discussion of rectifying circuits used in converting a varying signal to one of a steady nature (such as dc).
Fig. 1: Various formats for a bridge network.
What is an example of bridge network?
The bridge network may appear in one of the three forms as indicated in [Fig. 1]. The network in [Fig. 1(c)] is also called a symmetrical lattice network if $R_2 = R_3$ and $R_1 = R_4$. [Fig. 1(c)] is an excellent example of how a planar network can be made to appear nonplanar. For the purposes of investigation, let us examine the network in [Fig. 2] using mesh and nodal analysis.
Fig. 2: Assigning the mesh currents to the network.
$$(3 Ω + 4 Ω + 2 Ω)I_1 - (4 Ω)I_2 - (2 Ω)I_3 = 20 V$$
$$(4 Ω + 5 Ω + 2 Ω)I_2 - (4 Ω)I_1 - (5 Ω)I_3 = 0$$
$$(2 Ω + 5 Ω + 1 Ω)I_3 - (2 Ω)I_1 - (5 Ω)I_2 = 0$$
$$ \begin{split}
9I_1 - 4I_2 - 2I_3 &= 20 \\
-4I_1 + 11I_2 - 5I_3 &= 0 \\
-2I_1 - 5I_2 + 8I_3 &= 0
\end{split}$$
$$ \begin{split}
I_1 &= 4 A\\
I_2 &= 2.67 A\\
I_3 &= 2.67 A
\end{split}$$
$$I_{5Ω} = I_2 - I_3 = 2.67 A - 2.67 A = 0 A$$
Fig. 3: Defining the nodal voltages for the network.
$$ \begin{split}
({1 \over 3 Ω} + {1 \over 4 Ω} +{1 \over 2 Ω})V_1 -({1 \over 4 Ω})V_2 - ({1 \over 2 Ω})V_3 &={20 \over 3} A \\
({1 \over 4 Ω} + {1 \over 2 Ω} + {1 \over 5 Ω})V_2 - ({ 1 \over 4 Ω})V_1 - ({ 1 \over 5 Ω})V_3 &= 0 \\
({ 1 \over 5 Ω} + {1 \over 2 Ω} + {1 \over 1 Ω})V_3 - ({ 1 \over 2 Ω})V_1 - ({1 \over 5 Ω})V_2 &= 0
\end{split}$$
$$ \begin{split}
({1 \over 3 Ω} + {1 \over 4 Ω}+{1 \over 2 Ω})V_1 - ({1 \over 4 Ω})V_2 - ({1 \over 2 Ω})V_3 &= 6.67 A \\
- ({ 1 \over 4 Ω})V_1 + ({1 \over 4 Ω} + {1 \over 2 Ω} +{1 \over 5 Ω})V_2 - ({1 \over5 Ω})V_3 &= 0\\
- ({1 \over2 Ω})V_1 - ({1 \over 5 Ω})V_2 + ({1 \over 5 Ω} + {1 \over 2 Ω} +{1 \over 1 Ω})V_3 &= 0
\end{split}$$
$$\begin{split}
V_1 = 8.02 V \\
V_2 = 2.67 V \\
V_3 = 2.67 V
\end{split}$$
$$V_{5Ω} = V_2 - V_3 = 2.67 A - 2.67 A = 0 V$$

(a)

(b)
Fig.4: (a)Substituting the short-circuit equivalent for
the balance arm of a balanced bridge. (b) Redrawing the network
$$ \begin{split}
V_{1Ω} &= {(2 Ω || 1 Ω)20 V \over (2 Ω || 1 Ω) + (4 Ω || 2 Ω) + 3 Ω} \\
&={{ 2 \over 3}(20 V) \over {2 \over 3} + {8 \over 6} + 3} \\
&={40 V \over 15} \\
&= 2.67 V
\end{split}$$


Fig. 5: Substituting the open-circuit equivalent for the balance arm of a balanced bridge.
$$ \begin{split}
V_{3Ω} = {(6 Ω || 3 Ω)(20 V) \over 6 Ω || 3 Ω + 3 Ω} \\
= {2 Ω(20 V) \over 2 Ω + 3 Ω} = 8 V
\end{split}$$
$$ \begin{split}
V_{1Ω} &= {1 Ω(8 V) \over 1 Ω + 2 Ω} \\
&= {8 V \over 3} = 2.67 V
\end{split}
$$
Fig. 6: Establishing the balance criteria for a bridge network.
The bridge network is said to be balanced when the condition of $I = 0 A$ or $V = 0 V$ exists.
If $V = 0 V$ (short circuit between a and b), then
$$V_1 = V_2$$
$$ I_1R_1 = I_2R_2 $$
$$I_1 = {I_2R_2 \over R_1}$$
$$V_3 = V_4$$
$$I_3R_3 = I_4R_4$$
$$I_1R_3 = I_2R_4$$
$$({I_2R_2 \over R_1}) R_3 = I_2R_4$$
$$\bbox[5px,border:1px solid grey] {{R_1 \over R_3} = {R_2 \over R_4}} \tag{1}$$
Fig. 7: A visual approach to remembering the balance condition.
Be the first to comment here!

Do you have any questions?